AtlanticWave-SDX
  • Home
  • About
    • Collaborators
    • Meet the Team
    • Careers
    • Fellowships
    • Outreach
  • Engineering
    • Documentation
    • Release notes
    • Network Infrastructure
    • Development
  • News
    • News 2025
    • News 2024
    • News 2023
    • News 2022
    • News 2021
    • News 2020
    • News 2019
    • News 2018
    • News 2017
    • News 2016
    • News 2015
  • Publications
    • Project Publications
    • Project Presentations
    • Press releases
    • SDX Related Publications
  • Contact us
  • Home
  • About
    • Collaborators
    • Meet the Team
    • Careers
    • Fellowships
    • Outreach
  • Engineering
    • Documentation
    • Release notes
    • Network Infrastructure
    • Development
  • News
    • News 2025
    • News 2024
    • News 2023
    • News 2022
    • News 2021
    • News 2020
    • News 2019
    • News 2018
    • News 2017
    • News 2016
    • News 2015
  • Publications
    • Project Publications
    • Project Presentations
    • Press releases
    • SDX Related Publications
  • Contact us

How did this packet get here?

  • Home
  • How did this packet get here?

How did this packet get here?

vassi2020-09-24T15:31:20+00:00

Jeronimo Bezerra presented “AmLight-INT: In-band Network Telemetry @ AmLight” at the Internet2’s annual Technology Exchange conference which took place in New Orleans, LA on December 9-12, 2019. the event is  a premier technical event in the global R&E community, convening technology visionaries (technologists, architects, scientists, researchers, engineers, operators, and students) from around the world, for 3.5 days of presentations and discussions focusing on the next generation of federated trust and identity, information security, and advanced network design.

Session Abstract: AmLight-INT: In-band Network Telemetry

At AmLight, since 2015, we have been pursuing, developing, and evaluating solutions to mitigate network issues affecting the SDN network operation. Many of these solutions were presented in previous Internet2 Technology Exchange and Global Summit conferences, such as the Testbed Sanitizer (2015), AmLight Sniffer (2015), SDNTrace (2016), Inter-Domain SDNTrace (2017), and the AmLight SDN Looking Glass (2018). However, these solutions were created with one significant restriction: the data plane could not be changed due to hardware restrictions. The fact that the data plane was untouchable limited our efforts and efficiency.

In 2018, a new project was created to take the troubleshooting to the next level: the AmLight In-Band Network Telemetry project, or AmLight-INT. The main goal of the AmLight-INT is to evaluate how to leverage new programmable data planes to increase our capabilities to mitigate the most diverse range of connectivity and performance issues. AmLight-INT is based on the capabilities provided by the new Barefoot Networks’s Tofino chip: a fully programmable chip capable of forwarding traffic at 3.2Tbps. Using Tofino and the P4 language, the next steps would be to program the AmLight data plane to send telemetry data from each network device using a selective monitoring approach to In-band Network Telemetry (INT) collectors developed by FIU to receive, store, and process that telemetry data in real time. The INT collectors are components of the AmLight SDN framework. The reports provided by the INT collectors will guide the SDN path finders to make forwarding decisions.

The primary goal for AmLight-INT is to provide telemetry data to Collectors, in real time, so they can answer questions, such as the following:

  1. How did this packet get here? The sequence of network devices a packet visited along its path.
  2. Why is this packet here? The set of rules a packet matched upon at every AmLight-SDN switch along the way.
  3. How long was this packet delayed? The time a packet spent buffered in every AmLight-SDN switch, to the nanosecond scale, all the way from South America to the U.S. As secondary goals, we want to address these challenges.
  4. How do we report the network status back to applications and users?
  5. How many applications/flows can we monitor in parallel? AmLight network engineers understand that, even though Barefoot Tofino chips can handle 3.2Tbps, network servers and collectors cannot.
  6. Is it possible to dynamically enable monitoring of specific flows? With scalability in mind, AmLight SDN software developers aim to extend AmLight SDN controllers’ capabilities to trigger data plane monitoring of specific flows on-demand.
  7. What is the impact caused by INT in a complex network such as AmLight? Introducing metadata on each packet crossing a switch has implications: packets get larger, and MTU might become an issue; larger packets introduce an additional delay for serialization, and larger packets use more buffers.

We understand that the future of SDN and performance monitoring and measurement are linked to the capabilities of expanding the data plane to support previously unimagined solutions and applications. Our goal with this presentation is to share with the TechEx audience our experience with programmable data planes and in-band network telemetry, lessons learned, achievements, and future steps for AmLight to use INT in production to support large scale projects, such as the Large Synoptic Survey Telescope (LSST) and Open Science Grid (OSG).

Co-Authors:
Name: Julio Ibarra
Affiliation: Florida International University
Email: julio@fiu.edu

Name: Heidi Morgan
Affiliation: University of Southern California
Email: drheidi@mac.com

Name: Arturo Quintana
Affiliation: Florida International University
Email: arturo.quintana@fiu.edu

For Jeronimo’s presentation please click here.

Share this post

Facebook Twitter LinkedIn Google + Email

Related Posts

Global Experimentation for Future Internet (GEFI 2017) October 26-27

Dr. Heidi Morgan and Dr. Julio Ibarra participated in GEFI Workshop which took place in Rio de Janeiro, Brazil on October 26-27,... read more

AmLight Express and Protect demonstrates the utility of the collaborative initiative to connect South Africa via AmLight-SACS

Miami, Florida, March 30, 2020 – On March 1, 2020, we announced AmLight Express and Protect interconnects three continents by activating... read more

Lighting up the LSST Fiber Optic Network: From Summit to Base to Archive

  April 11, 2018 – The LSST Network Engineering Team is pleased to announce the first successful transfer of... read more

Rubin Observatory Will Help Unravel Mysteries of Dark Matter and Dark Energy

Vera C. Rubin Observatory’s unprecedented deep and wide survey will create most precise map of Universe ever

11 October 2023 Rubin Observatory’s... read more

Join us for an exciting tutorial on AtlanticWave-SDX & FABRIC integration!

Presented by: Jeronimo BezerraLocation: Dogwood AtlanticWave-SDX is bridging the gap between FABRIC experimenters and global research networks, enabling seamless connectivity to instruments in Florida,... read more

AARNet launches SDN innovation platform for researchers

AARNet, Australia’s Academic and Research Network, today announced the launch of the Australia Wide-Area SDN Testbed, an innovation... read more

Innovating the Network for Data-Intensive Science (INDIS) at SC17

AtlanticWave-SDX team presented the research paper "Orchestrating Intercontinental Advance Reservations with Software-Defined Exchanges" at the 4th International Workshop on Innovating... read more

Americas Lightpaths Express and Protect Activates First US – Latin America 100G Networking Link Enhancing Infrastructure for Research and Education

  Miami, Florida, April 26, 2016 – Florida International University’s Center for Internet Augmented Research and Assessment (CIARA) is pleased to announce... read more

Brazilian Symposium on Computer Networks and Distributed Systems (SBRC)

AmLight Team (NSF Awards # ACI 1451018 and 0963053) participated in the Brazilian Symposium on Computer... read more

Press release: AtlanticWave-SDX

      PRESS RELEASE  Media Contact: Heidi Morgan, Director Center for Internet Augmented Research and Assessment (CIARA) Florida International University 305-348-2006 heidi@fiu.edu AtlanticWave-SDX: A Distributed... read more

Get In Touch

Contact Us

Center For Internet Augmented Research & Assessment Florida International University
  • Address: 11200 SW 8St, PC312 Miami, FL 33199
  • Email: contacts@amlight.net

Follow Us

Facebook Twitter

Click here to subscribe to our mailing list

© Copyright 2015-2025 | Florida International University | Contact Webmaster