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Abstract—Deploying and operating a production software
defined network (SDN) requires substantial engineering effort
to maintain the stringent function, availability and security re-
quirements. One major challenge is the SDN controller software
system that needs an efficient development and deployment
environment, and a systematic process to combine both network
engineering and software engineering best practices to fit in a
targeted network environment.

In this report, we present our recent engineering work to
bring a wide-area SDN controller prototype towards production
deployment and operation. We primarily focused in three major
areas: Enhancement of the software functions and the substrate
configurations to fill the data plane gap between the prototype
and the physical network substrate to fully support advanced
layer-2 connection services; creation of a high-fidelity testing
pipeline consisting of the unit test, emulation, and a realistic
testbed; and establishment of a continuous integration and
continuous deployment (CI/CD) environment and the DevOps
process. Our experience proved that the presented environment
and process greatly increased the software quality and develop-
ment efficiency, which would ultimately lead to a more reliable
migration to the targeted production network deployment.

I. INTRODUCTION

Through centralized control and control plane programma-
bility, software defined network (SDN) provides a new
paradigm at different parts of the Internet which could greatly
automate the network operation and reduce the operator’s
burden.

While the SDN controller software takes over some of the
major control tasks that were normally performed by operators,
deploying and operating a complex SDN software system still
remains a great technical challenge, especially when migrating
an existing network with legacy non-SDN elements. In this
new territory, network engineering and software engineering
have to be considered holistically in order to guarantee the
successful operation of the network, especially when there are
stringent requirements on system availability and security in a
production network.

While SDN deployments have become pervasive in data
centers, its adoption in the wide area network (WAN) has
also been growing rapidly, especially in large cloud operators’
networks that are over geographically distributed areas [1].
Applying SDN over a multi-domain network environment has
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attracted lots of interest in recent years. However,it remains
a great challenge to migrate a multi-domain network to be-
come SDN capable to (1) automate the advanced end-to-end
network services in other layers, such as layer-1 and layer-
2 connections; (2) provide QoS guaranteed service, due to
well-known provisioning complexity, domain heterogeneity,
and stringent SLA (Service Level Agreement) requirements.
The best engineering practice in this area still largely relies
on in-person communications and manual configurations of a
group of collaborative operators, which often takes a long time
and is error-prone.

One particular multi-domain WAN network environment is
the so-called Open Exchange Point (OXP) for more efficient
interconnection of participating networks. OXP finds its promi-
nent use cases in the global research and educational network
community where efficient and high-bandwidth networking
services for dissemination of large volume of data is essential.
Several EU and US OXPs pioneered the SDN adaptation
through experimental testbeds and pilot deployments [2], [3].

The most challenging parts of adapting the SDN technology
is the choice or development of the SDN controller software.
The common open source SDN controller frameworks are far
from sufficient to become operational in the complex OXP
landscape. Popular single Openflow (OF) controllers, such
as Floodlight and Ryu, are not scalable for the wide area
distributed OXP networks. Popular distributed control frame-
works, like ONOS, also need significant customization and
further development to provide the needed services at different
network layers with devices from different vendors [4]. A main
challenge is that some key networking service functions like
topology discovery, connection computation and management,
and QoS do not exist in the existing controller framework. The
lack of north bound APIs to end users and applications as well
as the authentication and authorization functions also made
it difficult to deploy the common controller framework in a
production setting. Another challenge is the highly heteroge-
neous physical devices from different vendors in each domain.
They often comply with the OF specification to different
degrees, as there exists multiple versions of the specification,
and implementation details are always very different. More
advanced switches, not like the simple OF white box switches,
support network virtualization natively, which requires device
specific configurations to work with a specific OF controller



of choice.

As a result, some OXPs started to develop their own con-
troller software with their specific network domains, vendors,
and use cases in mind. AtlanticWave-SDX (AW-SDX) repre-
sents such a controller framework that has recently finished
a prototype with a distributed system architecture design [5].
While the prototype project started with a functional design
in collaboration with the network engineering team and fol-
lowed good software development practices, there still are
some important gaps towards production deployment. After
a systematic review process, we identified three major areas
for improvement.

Firstly several AW-SDX functions need to be implemented
and enhanced in order to fill the data plane gap between
the prototype and the physical network substrate to support
the main connection services reliably: dynamic point-to-point
(P2P) and point-to-multipoint (P2MP) layer-2 services with
rate limiting. These include the failure handling capability
that would not manifest its importance in the prototype but
is extremely important for the operationalization of the SDX
system.

Secondly, a high-fidelity testing environment is imperative
to provide the complete functional and performance coverage.
This environment should consist of a pipeline of unit test,
emulation, and an at-scale testbed to guarantee the software
development and deployment quality. The last one is to create
a continuous integration and continuous deployment (CI/CD)
environment to provide software quality guarantee and de-
ployment efficiency. This effort follows the recent DevOps
trend that was started from the IT system domain and quickly
became the main stream methodology due to its superior
capability in combining the software development (Dev), IT
(including network) operations (Ops) efforts.

In this report, we present our work in engineering the
AmLight SDX control framework towards deployment and
operations to a production OXP network environment in the
context of the above three thrusts.

The rest of this report is organized as follows. We introduce
the AW-SDX controller software and functional enhancement
towards the targeted production network in Section II. We
present a high-fidelity system emulation and testing pipeline
environment in III. We describe the DevOps-based software
engineering practice that features a CI/CD (continuous inte-
gration/continuous deployment) environment that covers the
complete pipeline from the testing environment to the produc-
tion network. Evaluation results are presented in Section V
and the paper is concluded in Section VI with lessons learned
and future work.

II. AW-SDX CONTROL FRAMEWORK ENHANCEMENT

SDN assumes a separate and logically centralized control
plane. The OF framework standardized the southbound API
to control the switches. Various controller frameworks have
been developed to implement the OF specification and provide
northbound APIs for applications to interact/program with the
SDN. As a SDN network scales up, single controller (Ryu,

Floodlight, etc.) would suffer from various performance, scala-
bility, and fault tolerance problems. Therefore, distributed mul-
tiple controller frameworks have been emerging, with ONOS
being the most popular one. However, these multi-controller
frameworks primarily focus on scalability and availability
challenges of the controller software, in which physically
distributed controllers are all part of the same logical controller
that still keep the same overall network view. For the multi-
controller framework, decisions also have to be made to decide
the placement and connectivity of the controllers, i.e., the
control plane network. The common practice is to separately
provision a static control plane network (normally the same
management network) for both inter-controller and controller-
switch communications. There have been several efforts to
automate the creation of the control plane network, via a so-
called bootstrapping process [6].

For the targeted multi-domain OXP network environment,
the controller design choices range from the hierarchical re-
source orchestration oriented and protocol oriented distributed
model architecture. A representative orchestration architecture
uses a central controller to interact with local domain proxies
via a brokering service to make high level end-to-end resource
provisioning decisions [7]. Another representative distributed
network control framework is the popular NSI [3]. However,
these legacy system do not support the SDN standards, espe-
cially the OF specifications.

The AW-SDX controller framework is a distributed solution
that has native SDN support as part of its design goals.
As depicted in Figure 1, the AW-SDX controller is a two-
level controller architecture where a central controller (SDX
controller) is tasked to handle users’ request (APIs) and
control a group of local controllers (LC1, LC2, and LC3
in the figure) , each of which controls a part of the SDN
network (networkl, network2, and network3 in the figure).
The local controller embeds a customized Ryu controller
to control the OF switches in its own domain. The AW-
SDX control plane network that connects the SDX controller
and all LCs can be bootstrapped via an in-band data plane
network. The current implementation of AW-SDX assumes a
pure OF data plane consisting of switches supporting OF1.3.
Specifically it targeted a production SDN network built from
the advanced Corsa switches. This distributed architecture
targeted the typical wide area OXP network landscape where
scalability is a top concern. More details on the AW-SDX
architecture can be found in [5].

In the following, we describe four common function and
quality pitfalls that were really hard to catch in the prototype
work. All these pitfalls turn out to be critical to the successful
operation of the production network. Not surprisingly they
all became our focus in the process of migrating towards the
production deployment.

A. Data plane, multi-tenants, and Corsa switches.

While the public Internet and enterprise networks primarily
operate on the ’'narrow waist’ IP layer, the research and
educational networks often need to provision high-bandwidth
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Fig. 1: Distributed SDX Controller Architecture

layer-2 network services to support data-intensive scientific
applications. This is particularly true for OXP networks.
Therefore, one major assumption that the AW-SDX controller
made was that it will operate at layer-2 and have VLAN
connections as its primary service. Secondly, OXPs need to
support a large number of organizations with a broad spectrum
of SLA requirements, and multi-tenant virtual network oper-
ational requirements. The low-level OF rules for data plane
provisioning are highly device dependent. While the AW-
SDX software architecture itself, especially the separated LCs,
supports plug-ins of different substrate devices, the current
implementation only supports the OVS and Corsa switches.
This means the production network substrates need to be
configured accordingly to a state that the AW-SDX is able
to provision end-to-end services. Because the Corsa switches
in the production network over the wide area OXP network are
connected via several hops of non-SDN devices and networks,
the precursory work to configure the underneath non-SDN
network elements to create a SDN/SDX substrate is significant
and substantial.

Most OF switches do not support device level virtual-
ization in terms of flow space and performance isolation.
A few switches support the hybrid mode, i.e., splitting the
physical ports into traditional layer-2 (learning switch and
VLAN functions) and OF (controlled by outside OF controller)
groups. The de facto virtualization solution is to add a software
virtualization layer like Flowvisor; however, its development
stopped at only supporting OF1.0.

To alleviate the performance and complexity challenges of
existing solutions to support multi-tenant network environ-
ments, Corsa introduced the device level virtualization via
the Virtual Fowarding Contexts (VFC) constructs and quickly
gained many users in the research and education network
communities. The VFC provides native layer-2 and layer-
3 VPN supports [8]. Therefore, appropriate VFCs need to
be designed and configured in order to work with the OF
controller to support the designated services. There are two
implications from using this advanced switch platform to the
SDX development: (1) During the development stage, SDX
software development largely relied on the Mininet with Open

vSwitch (OVS) for prototyping and testing. However, data
plane emulation in Mininet-OVS emulation is far from the
actual device platforms. Even the initial implementation and
testing against a single Corsa switch is not sufficient, because
it lacks the network aspect. (2) On the other hand, to our
advantage, VFC allows us to test and trial the SDX controller
in an isolated slice in a SDN network without affecting other
traffic.

Rate Limting. Adding to the complexity is that the Corsa
switch did not fully comply with the OF 1.3 specification,
and OF doesn’t support rate limiting. Nevertheless, since the
main design goal was to support an end-to-end layer-2 VLAN
connection service, a layer-2 VFC needed to be configured in
every Corsa switch in the network. However, this type of VFC
doesn’t support a rate limiting function. Our solution was to
use an accompanying VFC in every switch in the data path to
provide the rate limiting function. We show a configuration of
a switch in Figure 2. VFCs are represented inside the green
rectangle.

The VFC in the middle acts as the main OF switch. The
VEC on the right side is a rate limiting VFC implemented
in the prototype. These two VFCs are connected via a fiber
connection via two pairs of physical ports. The OF controller
will be instructed by the SDX controller to have the rate
limiting VFC in the data path if a rate limiting request is
served. However, in the real testbed testing with multiple
Corsa switches, this configuration doesn’t work for the rate
limiting in P2MP connections. The root cause is that, unknown
ports (multi-point nature) are tracked via OpenFlow Metadata.
OpenFlow Metadata is optional and Corsa switches reject
some optional metadata in different ways. This forced us to
re-implement the rate limiting function with a different type
of VFC, the one on the left side in the figure, which is a type
of dedicated “Layer2-vpn” VFC. Packets from the main VFC
will be sent to this VFC, through tunnels that have a shaped-
rate configuration on them. These tunnels will be created
and deleted on demand. Accordingly, the related functions
in the SDX controller and the OF controller were also re-
implemented.

Point-to-MultiPoint Connections Another example where
re-implementation was necessary was the P2MP connection
feature. Due to the small scale of the original testing envi-
ronment, initial tests were all simpler P2MP connections that
were manifested in two layers of trees where switches only
need to forward traffic between two ports. However, when
we tested a more complicated P2MP tree structure in a more
complext testbed, as shown in the Figure 3, the intermediate
node "DukeS1” didn’t multicast the packet to the three ports
in the tree correctly. We finally validated that the original
OF broadcasting rules were not working in the P2MP use
case, resulting in a re-implementation of the related OF rule
generation functions via the OF ”group” mechanism.

Legacy Network Devices and VLAN Continuity. In
emulation or in the testing environment, the whole VLAN
range was available on all the links. Therefore, the prototype
assumed VLAN continuity, in which the same VLAN is
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Fig. 3: A P2MP Connection Example

used for a connection, and for P2P or P2MP. However, in
a production network over multiple domains, a link between
two SDN switches is pre-provisioned through multiple legacy
switches in the underneath networks. These networks normally
have large chunks of VLAN pools for their local use, and only
commit a small range of VLANSs for SDN use. These available

VLAN ranges on different SDN links are normally not the
same, not even overlapping. As a result, we re-implemented
the topology description, the path finding algorithm, and the
VLAN translation OF rule function to remove the VLAN
continuity constraint.

Dynamic connection creation and release. When connec-
tions come and go as on-demand or advanced reservation,
network resources are reserved and released dynamically. It
is a fundamental function to keep the network resource state
correctly managed, including connection and resource states in
the SDX controller and the LCs, as well as the flow entries in
all the switches. This requires thorough at-scale testing using
a sufficient number of test cases, and with a large number
of connections. As a matter of fact, we were only able to
discover and fix a few deeply hidden bugs in the prototype
when handling flow entry creation and release, after we tested
a large number of mixed on-demand and advance reservation
P2P and P2MP connections in the testbed.

B. Failure handling

While the basic connection provisioning functionality and
implementation were the focus of the AW-SDX prototype,



high availability is an imperative requirement for a production
network. We systematically addressed the following failure
scenarios:

Controller hardware and software crashes. The SDX
controller and LC software may crash due to server resource
(CPU and memory) depletion or unhandled bugs. If the
controllers run in a cloud, the host servers or virtual machines
may crash due to different reasons. In both cases, we need to
be able to restart the SDX software and/or reboot the servers
without losing the state of SDX controllers and the existing
connections.

Therefore, following failure handling mechanisms need to
be in place: (1) resuming the communication between the
SDX controller and LC controller, which is accomplished by
a socket-based communication implementation. (2) recovering
the state information in AW-SDX system that includes the
topology, all the existing users and connections that have been
created. To save the state information, the AW-SDX system
must rely on a persistent database.

The persistent database capabilities and schema were fully
tested and tightened such that when a controller (AW-SDX
controller or one of the Local Controllers) needs to be re-
booted, the topology and all existing connection information
and rules are fully recovered.

Management plane failures. The Management plane is
an out-band pre-configured secured network for the system
admin to access the servers running the SDX controllers and
the switches remotely. Our solution follows best practices in
system administration: (1) configure all the SDX controllers
in one network behind a firewall for the SDX administrator to
access; (2) as the switches are behind management networks
separately administrated by local networks, we need to have
an efficient communication process in place for the admin-
istrators and the SDX administrator to work together to fix
access failures. At the RENCI testbed, all the controllers were
deployed in the form of VMs, inside the RENCI production
data center. This is the recommended model to deploy the
SDX controller with the benefit of seamless migration of the
controller VMs and management plane when the data center
environment is changed. The management network interfaces
are configured behind a firewall that only allows VPN access.
We also planned to deploy a system health monitoring and
intrusion detection system.

SDX control plane failures. As a distributed networking
infrastructure, it is desired for AW-SDX to promptly detect
failures, and to recover the failures anywhere within the
federated infrastructure. There are two types of failures in the
AW-SDX system: data plane failure on the SDX network path,
and control plane failure on SDX controllers. Link failures will
disrupt the communication between the SDX controller and
one or more of the LCs. The development effort of the Control
Plane bootstrapping, recovery and failure handling consists of
adding the following functions to the SDX controller:

o Improving the current implementation, which does not

handle any link failure and reconfiguration scenario. We
implemented a new module in the AW-SDX controller

that, when a link failure caused disconnection of the
control plane network, the AW-SDX controller will re-
calculate and reestablish the control plane network using
the backup ports and links.

o Thorough testing of the control plane to guarantee rule
consistency when the AW-SDX controller and one or
more local controllers are rebooted. We developed and
validated the capability to recover the control plane
network after we broke a link by disabling a switch port
on the original control plane.

o Separating the control plane bootstrapping function to
a standalone software.We developed a separate software
module that only bootstraps the control plane. This would
allow easy and clean debugging of the control plane
problems.

o Separating the configuration manifest files for the SDX
controller and individual local controllers. We restruc-
tured the manifest file and developed the necessary pars-
ing code so that the LC manifest only need to contain
the local network information.

SDX data plane failures. Link failures will cut off the
existing connections and disable the capability to create new
connections over the part of the network affected by the failed
link(s). The development effort of the Data Plane recovery and
failure handing consists of adding the following functions to
the SDX controller:

o P2P and P2MP rule persistency (recovery) after switch

and/or LC reboot.

« Due to the in-band control plane, a link failure may break
both control plane and data plane networks. A complete
failure handling function needs to coordinate the recovery
of both networks.

o P2P and P2MP connection rerouting after link failures.

Figure 4 shows an example of the SDX failure handling
mechanisms. In case of a link failure between the NCSU
switch and the UNC switch, or UNC local controller node
failure, the SDX system is able to coordinate between the
SDX controller and NCSU’s adjacent local controller—Duke
in this case—to establish the link between San UNC and
NCSU switches. Therefore, the control plane and data plane
connection will be recovered.

C. Authentication

Due to the nature of multiple administrative domains, extra
care needs to be taken to address the AAA (authentication,
authorization, and accounting) and incomplete domain infor-
mation (topology and resource abstraction). Authentication is
handled by outsourcing to the Internet2 CILogon federated
identity management service. CILogon provides an integrated
open source identity and access management platform for
research collaborations, combining federated identity manage-
ment (Shibboleth, InCommon) with collaborative organization
management (COmanage). Federated identity management en-
ables researchers to use their home organization identities to
access research applications, rather than requiring yet another
username and password to log on.
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Vouch Proxy is an SSO solution for Nginx using the
auth_request module that relies on the ability to share a
cookie between the Vouch Proxy server and the application
it protects. Figure 5 depicts our implementation using Vouch-
Proxy (with Nginx) to enable authentication with CILogon’s
OpenID Connect (OIDC) service for gaining access to our
AW-SDX web interface.

The implementation is customized to fit into the existing
Flask web application framework that the AW-SDX portal
and API are based on. We added two containers running a
Vouch Proxy server and a Nginx web server to the SDX
system to enable authentication using CILogon for users to
gain the access to the AW-SDX web applications (portal and
APIs). As shown in Figure 5, the authentication subsystem
consists of an Nginx web server, a Vouch-Proxy server, and the
application (SDX Controller), each of which runs in a separate
Docker container. Vouch-proxy is a general OAuth/OIDC
(Open Authentication/OpenlD Connect)) login solution that
supports many IdP (Identity Providers), including the CILogon
Service that we chose to use. The login workflow consists of
the following steps: (1) User visits the SDX web site from a
local browser; (2) the Nginx reverse proxy server proxies the
request to the Vouch server. (3) Vouch server maintains the
state of this Login session. (3.a) If it’s validated already, it
returns a validate JWT (JSON Web Token) to allow the user
to access the SDX service; (3.b) If not validated, the Vouch
server will proxy the user to the CILogon; (4) the user can then
login using her home institute’s login service. (5) the Vouch
service returns the validation back to the Nginx server.

III. TESTING PIPELINE

Testing is the most important step to guarantee functional
behaviors and software quality. Due to its distributed system
nature, the AW-SDX software system consists of multiple
components interconnected via the SDX control plane network
that need to maintain communication reliability and persistent
internal states. Therefore, an emulation testing environment is
important for sufficient testing of the basic AW-SDX control
plane and data plane functions. As we discussed in Section II,

SDX Controller

Fig. 5: Authentication CILogon Outsourcing

data plane functions are highly device and network configura-
tion dependent, requiring testbed-based testing and validation.

Unit tests Initial SDX software development has unit tests
as an integral part of the development process, which covers
the majority of the major functions responsible for the inter-
controller communication over the control plane, the path
computation and splitting between the LCs, and the APIs.

Containers and Mininet based emulation The technolo-
gies of Docker, OVS software switches, and Mininet software
emulator have made it convenient to build a virtual network
emulation environment for the basic system functional test
of the multi-component AW-SDX controller. Furthermore,
the entire emulation can be packaged and executed inside a
virtual machine (VM); and within multiple containers running
the individual controllers (SDX controller and LCs) and a
Mininet network. In order to conduct repeated deployment
and testing during the active development and testing, we
opted to implement this example as a Jenkins job that is built
and deployed to a VM running in the RENCI production data
center.

Testbed As we discussed in previous section, emulation
testing is far from sufficient. Therefore we built a Corsa testbed
on top of an existing metro-scale optical network facility that
RENCI maintains. This testbed spans four locations in the
RTP NC area: RENCI, UNC, Duke, and NCSU, which are
connected via a fiber ring network. As shown in Figure 6,
we deployed 5 CORSA switches, two in RENCI, and one
in each of the other three sites. Each switch was connected
to a high-end server that hosts the SDX Local Controller
(LC). The server also played the role of end hosts of the
data plane connections. A dedicated VM was provisioned in
the RENCI data center to host the AW-SDX controller (SDX-
CTRL). This testbed mimics the current physical infrastructure
of the targeted AmLight network. We note the physical cable
connection between a pair of ports on the CORSA switch. Its
purpose is for the AW-SDX software to provide a bandwidth
rate limiting function.

All entities, including the switches and controllers, are
first provisioned with a dedicated management network that
allows the operator to remotely access them. Two VFCs are
preconfigured in each Corsa switch. A dedicated VLAN 1411
is reserved for the in-band AW-SDX control plane. The in-
band control plane topology (tree) is specified in the manifest
file.



The AW-SDX controller and LC run inside Docker con-
tainers, whose image build, deployment, and start up are
automated through our customized scripts and CI/CD tasks
in the Jenkins server, which we describe in next section.

IV. SOFTWARE ENGINEERING AND CI/CD PIPELINE

A typical software development process generally falls into
broad groups which can be defined as a Software Devel-
opement Life Cycle (SDLC) as: (1) Planning/Requirements
(2) Analysis/Design (3) Development and Implementation (4)
Testing (5) Maintenance

In addition, the emerging DevOps paradigm in system soft-
ware development and deployment proved extremely valuable
in improving the efficiency and availability in an operational
product network environment [9], [10]. In this work, we
closely followed best practices in software engineering and
DevOps.

Regardless of the development team size, there are tools
that can greatly aid in the management and curation of code
development, testing and maintenance throughout the lifecycle
of a project. These tools fall into two broad categories, source
code version control and continuous integration / continuous
delivery (CI/CD). In many cases these tools are free to use
as publicly hosted web services, like the Github, or available
as open source products, which can be built/hosted by the
development team.

We created a CI/CD environment using the popular Jenkins
platform hosted in the RENCI data center. Using this platform,
along with the project Github repo, the processes of software
integration, including automatic build and unit testing, and
deployment into the testing pipeline (see Section III) were
fully automated.

Porting to Python 3. The AW-SDX prototype is based
on Python 2. Steps were taken to port the codebase to be
Python 3 compliant, such that it maintains proper package
support beyond the Python 2 end-of-life date on January 1,
2020. It is desirable to maintain the compatibility with Python
2. The porting process took substantial work, especially for
a system software like AW-SDX that has dependencies on
other complex software and many Python features that are not
compatible in Python 3.

o To ease the porting complexity, the Python organization
provides the Futurize package to update the code. We
used the 2-step Futurize process to solve the compatibility
issues more efficiently. After this process, some deeper
compatibility issues still remained.

o Python 3 introduced several incompatibility issues in
some basic types and data structures. The most notable
one is that Python 3 distinguishes two string types, str
and bytes that are equivalent in Python 2. Since the
SDX LC functions involves the bytes type in generating,
saving, and socket serializing the OF flow related rules,
it required a manual fix in many places in the code.

o Many data structures, including the dictionary, are no
longer orderable in Python 3. so manual adjustments in

many related data structures that AW-SDX implemented
were needed.

Version control and Continuous integration (CI) The
code is hosted in a Github repository and we re-organized it to
the standard structure of three branch levels: Master, Devel-
opment, and Features. Accordingly, we formally established
our software development process: (1) individual developers
create feature branches off the Development branch for new
feature addition and bug fixes; (2) after unit tests, emulation
tests, and peer review, feature branches can be merged into
the Development branch for testbed deployment and tests; (3)
after a certain milestone was met, the Development branch can
be merged into the Master branch for a new release.

Good test coverage is key to minimizing bugs and issues
from creeping into the code as changes are being made, which
is frequent. Code coverage is a measurement of how many
lines/blocks/arcs of code are executed while the automated
tests are running. Python has a very strong notion of style
and code format. Python based projects make use of multiple
packages from official vendors, as well as third party contribu-
tors. It is often painstaking for a developer to keep track of the
state of all packages being used within a project. Additional
code analysis tooling exists that can be used to automatically
inspect and generate interactive reporting for developers to
use to improve their overall code efficiency, readability and
maintainability. These are proven open source software tools
to conduct the above tasks and they can all be automated
as part of the Jenkins tasks. To help us improve software
quality in a more efficient way, we implemented several of
the tasks using the following open source tools: Pylint source
code quality checker, requiresio package monitoring, SWAMP
for continuous software assurance, and CodeClimate for code
quality analytics.

Continuous Deployment For the testbed deployment, a
Jenkins CD task was created to deploy the software from a
chosen branch in the Github repo. This task was optimized by
parallelizing the deployment of the SDX controller and LC
into the hosting servers distributed over the test environment.
As shown in Figure 7, the deployment process finished within
four minutes. By comparison, an earlier non-optimized version
took about ten minutes to finish the deployment in a series of
actions.

A similar task was also created for the production network
deployment.

The end result was the implementation of a complete CI/CD
chain that automated the testing and deployment in the testing
pipeline and production network.

V. EVALUATION

We conducted extensive testing in the SDX testbed. The
main performance evaluation results on both control plane and
data plane are presented in this section.

Figure 8 shows the time-stamps read from the log file in the
AW-SDX controller in milliseconds. It shows when the AW-
SDX controller was ready and the connections to the four local
controllers (LC) were ready in a rather short period of time.
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Fig. 6: BEN Corsa Testbed

In order to validate the correctness of dynamic connection
provisioning and scalability performance, a large number of
requests was submitted to the AW-SDX controller to validate
that they were created, deleted and re-created, and that OF
flows were pushed to the switches by Local Controllers
correctly. L2Multipoint requests were created for connections
with 3 and 4 endpoints respectively.

Figure 9 shows when different numbers of requests were
submitted, the provisioning time scales changed in a linear
manner. Figure 10 shows the number of OF entries in the OF
switches also scaled linearly.

To validate the rate limiting capability, we used ’Iperf’
between the end hosts of a connection to measure the through-
put. Figure 11 shows one such test when a 2Gbps request
was created and the effect of the rate limiting was clearly
observable.

Finally, we show the result of running a scientific work-
flow application on top of the SDX testbed. The Pegasus

Workflow Management System (Pegasus WMS) [11] bridges
the scientific domain and the execution environment, such
as compute, networking and storage infrastructures, by auto-
matically mapping high-level workflow descriptions onto dis-
tributed resources. AW-SDX leveraged Pegasus’ capabilities to
orchestrate the science application execution on the underlying
SDX infrastructure. In the demonstration, both 1000Genome
and CASA Nowecast workflows were able to seamlessly run
on AW-SDX’s real-time provisioned networking and compute
resources. AW-SDX was able to provision a high-bandwidth
request, and automatically recover the synthetic link failure
in the demonstration. The real-time AW-SDX performance
data transfer was reflected on the Pegasus online monitoring
system, shown in Figure 12.

VI. CONCLUSION AND DEPLOYMENT TO THE
PRODUCTION NETWORK

Figure 13 shows a representation of the testbed. ATLANTA
SWITCH, MIAMI SWITCH, and SANTIAGO SWITCH are
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Corsa switches deployed at SoX, AMPATH, and AndesLight
respectively. Internet2 AL2S and Florida LambdaRail (not
shown) are the transit networks between AMPATH and SoX,
and AmLight is the transit network to AndesLight in Santiago,
Chile. VLANs for Data, Control and Management planes
have been deployed between SoX and AMPATH, and are
in process to AndesLight. The AtlanticWave-SDX Production
Setup Node Layout documents the port assignments for each
Corsa switch (data plane) to Local Controllers running at
each exchange point. The Production Setup Tunnel Layout
documents the physical ports for uplinks and nodes, logical
ports and management ports. The AtlanticWave-SDX Pro-
duction Testbed Setup documents the configurations for the
testbed, such as the Out-of-band management and In-band
management configurations, Port tunnel-modes, Corsa Virtual
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Forwarding Contexts (VFCs), Rate Limiting VFCs, and the
scripts to start the SDX Controller and Local Controllers.
Documents are all accessible in GitHub.

Yellow rectangles represent SDX Local Controllers (LC).



There is a LC at each exchange point in the topology.
Each LC communicates to its local Corsa switch through
Data Connection (red) and Control Connection (dashed blue)
VLANSs. The Control Connection VLAN is used by the SDX.
controller to send commands to the Corsa switch. The Data
Connection VLAN is used for forwarding packets between
data plane (Corsa) switches. The Management VLAN (dotted
black) is used for in-band management of the Corsa switches.

Fig. 13: AmLight SDX Production Network

Referring back to what was discussed in Section II, to
make the SDX deployment operational in the production
wide area network, two engineering challenges stood out in
this process: (1) limited VLAN resource on the virtual links
between the Corsa switches from the underneath non-SDN
network domains; (2) constraints with the configuration of the
control plane connectivity between the SDX controllers and
the data plane switches to support the in-band control plane
bootstrapping.

Another realistic scenario emerged recently: the production
network operators decided to replace the Corsa switches with a
more advanced switch platform from a different vendor. This
effectively paused our deployment and testing effort in the
near term. However, with the systematic CI/CD and testing
pipeline based methodology and environment in place, we are
confident that the necessary adjustments in the software can
be made, tested, and deployed efficiently and reliably.
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