
Orchestrating Intercontinental Advance Reservations with
Software-Defined Exchanges

Joaquin Chunga,∗, Rajkumar Kettimuthuc, Nam Phob, Russ Clarkb, Henry Owena

aSchool of Electrical and Computer Engineering, Georgia Institute of Technology, USA
bCollege of Computing, Georgia Institute of Technology, USA

cMath and Computer Science Division, Argonne National Laboratory, USA

Abstract

To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred
to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated circuits
between research facilities for transferring large amounts of data, by using advanced reservation systems. Intercontinental
dedicated circuits typically require coordination between multiple administrative domains, which need to reach an
agreement on a suitable advance reservation. The success rate of finding an advance reservation decreases as the number
of participant domains increases for traditional systems because the circuit is composed over a single path. To improve
provisioning of multi-domain advance reservations, we propose an architecture for end-to-end service orchestration in
multi-domain science networks that leverages software-defined exchanges (SDX) for providing multi-path, multi-domain
advance reservations. We have implemented an orchestrator for multi-path, multi-domain advance reservations and an
SDX to support these services. Our orchestration architecture enables multi-path, multi-domain advance reservations
and improves the reservation success rate from 50% in single path systems to 99% when four path are available.

Keywords: Multi-domain advance reservation, Orchestrator, software-defined networking, software-defined exchanges,
bandwidth splitting

1. Introduction

Modern scientific instruments (e.g., particle accelera-
tors, large telescopes, and genome sequencers) generate
large datasets that are analyzed at supercomputing cen-
ters, typically hundreds of kilometers away from the orig-
inal research facility. To interconnect research facilities
with supercomputing centers across long distances, net-
work operators deploy science networks or Research and
Education (R&E) networks. These networks allow exper-
imenters to establish dedicated circuits between research
facilities by using advance reservation systems [1]. These
systems are deployed on top of science networks and man-
age network resources in a coarse grained fashion (i.e.,
source and destination endpoints, required bandwidth, and
duration of the reservation). Examples of advance reserva-
tion systems are advanced layer 2 service (AL2S) [2], open
exchange software suite (OESS) [3], and the on-demand se-
cure circuits and advance reservation system (OSCARS) [4].

As advance reservations are defined by endpoints, du-
ration, and bandwidth, the scheduling of resources is not

∗Corresponding author
Email addresses: joaquin.chung@gatech.edu (Joaquin Chung),

kettimut@anl.gov (Rajkumar Kettimuthu), nampho@gatech.edu
(Nam Pho), russ.clark@gatech.edu (Russ Clark),
henry.owen@ece.gatech.edu (Henry Owen)

flexible; that is, a reservation request will fail if the ex-
act amount of bandwidth between two endpoints is not
available within the specified time frame. This problem is
dramatically amplified for intercontinental dedicated cir-
cuits, because the reservation spans multiple administra-
tive domains, and participant domains have to reach an
agreement on a suitable advance reservation that fulfills
the requirements of the original request. Furthermore, this
system is not robust as a multi-domain advance reserva-
tion will fail because of a single domain despite a majority
of domains having available resources for the reservation.
Moreover, the success rate of finding an agreement is in-
versely related to the number of participants. This is anal-
ogous to scheduling a multi-legged flight with independent
airlines from different consortiums that do not share travel
schedules.

Another challenge is that advance reservations termi-
nate at the WAN border router of each domain, and partic-
ipant domains are interconnected at single junction points
[5]. As a result, multi-domain advance reservations are
generally provisioned over single paths, adding complex-
ity to solving the advance reservation agreement problem.
Furthermore, a data transfer has to compete with campus
LAN traffic to reach the advanced reservation at the WAN
border router of the research facility. Additionally, the in-
terface for requesting these types of reservations is complex
for domain scientists with limited networking knowledge.

Preprint submitted to INDIS 2017 October 26, 2017

Recently, software-defined exchanges (SDX) have emer-
ged as a new kind of cyberinfrastructure that allows inde-
pendent administrative domains to share computing, stor-
age, and networking resources by leveraging SDN [6]. We
posit that by inserting an SDX in the junction point be-
tween participating domains in an intercontinental advance
reservation, we will increase the success rate of finding a
multi-domain advance reservation. The initial benefit of
adding SDXs to the advance reservation process is over-
coming the limitation of single-path advance reservation
(i.e., SDXs enable multi-domain, multi-path advance reser-
vations). For instance, we may have two SDXs connected
through two different advance reservation providers, pro-
viding two independent paths between two end sites. As
a result, an experimenter may request half of the required
bandwidth in each domain instead of requesting all the
bandwidth in a single domain and not taking advantage of
the secondary path.

To take advantage of an SDX-enabled advance reserva-
tion system we require an orchestration framework. In this
paper we propose a reference architecture for orchestrating
end-to-end services in multi-domain science networks. We
demonstrate that by introducing SDXs in the provisioning
process, we are able to create multi-path, multi-domain
advance reservations that increases performance and effi-
ciency over traditional methods. The contributions of this
paper are:

1. An architecture for multi-domain, multi-path advance
reservations in science networks that leverages SDN
and SDX.

2. A negotiation protocol for multi-domain, multi-path
advance reservations that increases the reservation
success rate from 50% on a single-path system to
99% on our multi-path system.

3. Architectural approaches at the SDX level that en-
able novel science network services, while enhancing
the performance of science data transfers over tradi-
tional approaches.

This paper is organized as follows. Section 2 provides
background and motivation for this work. Sections 3 and
4 describes our architecture and design, respectively. Sec-
tion 5 describes our implementation, section 6 presents our
evaluation results, section 7 provides the related work, and
section 8 concludes and presents future work.

2. Motivation

2.1. Advance Reservation Systems

Traditionally, advance reservation requests are defined
by source and destination endpoints, required bandwidth,
start time, and end time. An advance reservation system
performs path computation and scheduling operations to

Figure 1: Intercontinental R&E links originated from the United
States.

verify if resources are available to fulfill a request. Cur-
rent implementations try to find an exact match for con-
straints provided in the request, and they fail if a suit-
able advance reservation is not found. Researchers have
proposed scheduling algorithms for flexible advance reser-
vations that increase the success rate of a reservation re-
quest in single domain scenarios [7, 8, 9]. However, for
advance reservations in which the circuit spans multiple
domains and follows a single path, flexible/malleable tech-
niques lose their benefits because participant domains have
to agree on the rigid constraints of the original request
to compose the end-to-end service. Fortunately, we find
path diversity on intercontinental links originated from the
United States, as shown in Figure 1. The topology maps of
ESNet [10] and Internet2 [11] report at least three links to
Asia Pacific, three links to Latin America, and four links
to Europe.

2.2. Software-defined Exchange (SDX)

A software-defined exchange (SDX) is a meet-me point
or marketplace where independent administrative domains
can exchange computing, storage, and networking resources
[12]. SDXs are an architectural innovation that will enable
multi-path, multi-domain advance reservations. SDXs will
also enable novel science network services such as multi-
path bandwidth splitting across independent WAN providers,
scheduled path migrations that are transparent to data
transfer applications, and multipoint-to-multipoint advance
reservations. Since SDX is a nascent technology, we need
to know the advantages and disadvantages of using SDX
as an interconnection point for multi-path, multi-domain
advance reservations. For instance, it is well known that
when using hashing for load balancing, all traffic corre-
sponding to the same hash will be sent to the same inter-
face. Nevertheless, we can take advantage of data transfer
protocols (e.g., BBCP [13] and GridFTP [14]) that create
multiple TCP streams, and distribute these streams over
a multi-path, multi-domain advance reservation.

2

3. Architecture Overview

To support multi-path, multi-domain advance reserva-
tions we require an architecture that takes advantage of
the enriched connectivity provided by SDX to compose
functional multi-path, multi-domain advance reservations
while improving the success rate of user’s requests and the
performance of science data transfers. Our proposed ar-
chitecture is composed of the following components (see
Figure 2):

1. Site controllers residing at research facilities that
generate or process data.

2. WAN and SDX controllers that interconnect partic-
ipating sites.

3. Orchestrators that consume services from site, WAN,
and SDX controllers, while exposing end-to-end ser-
vices to end users.

4. Users (e.g., domain-expert scientists) or applications
(e.g., data workflow management systems) that con-
sume end-to-end services composed by an orchestra-
tor.

3.1. Site, WAN, and SDX Controllers

The site, WAN, and SDX components of our archi-
tecture follow the same SDN abstraction proposed by the
ONF (i.e., infrastructure layer, control layer, and appli-
cation layer). In our architecture, the application layer
of SDN represents the science network services exposed
by each type of controller (i.e., site, WAN, and SDX con-
troller). In this context, a site, WAN, or SDX controller
may be any type of existing SDN controller, advanced
reservation system, or SDX controller. The main require-
ment is that the northbound interface of these controllers
should abstract the details of the network infrastructure
and expose relevant science network services. More de-
tails about this type of interface is provided in Section
3.3.1. The infrastructure layer is composed of the data
plane switches of each participant domain.

3.2. Orchestrator

The orchestrator is in charge of consuming services ex-
posed by participant domains (e.g., Site, WAN, and SDX
controllers), and composing end-to-end scientific services.
For instance, in order to connect site A to site B in Figure
2, the orchestrator needs to know if all domains in be-
tween can provide this connectivity. To successfully com-
pose end-to-end services, an orchestrator requires resource
management, scheduling, and path computation function-
alities. Our orchestrator maintains a minimal set of tables
or “databases”: a table of participant domains and the ser-
vices they provide, and a global topology view. In order
to be practical in multi-domain environments, the orches-
trator has to interact with the network resource managers
at each domain to query status and reserve resources.

We presented the orchestrator as an entity that over-
sees with all participant domains. However, many ques-
tions emerge in terms of deployment and management: is
the orchestrator centralized or distributed? Who runs and
manages the orchestrator? We propose that a single en-
tity deploys several instances of the orchestrator for load
balancing and resilience. The orchestrator then, is physi-
cally distributed and logically centralized. The orchestra-
tor may be run by a consortium of network providers. For
more flexibility, we propose that each scientific community
run their own orchestrator that exposes services to orches-
trators in higher levels, creating a hierarchy of end-to-end
service orchestrators.

3.3. Interfaces and Services

Users in our system are domain-expert scientists whom
in most of the cases do not have expertise in network op-
erations, but still need to request reservations to expedite
their data transfers. Additionally, scientists use data work-
flow management systems (e.g., Globus [15]) to automate
the process of moving and sharing data across research fa-
cilities. In our reference architecture, both scientists and
applications request end-to-end science network services
to the orchestrator by using interfaces that abstract net-
work infrastructure details in our reference architecture.
The following subsections provide more details about the
interfaces that allow communication between site, WAN,
or SDX controllers and an orchestrator, and between users
or applications and orchestrators.

3.3.1. Domain to Orchestrator (D-O) Interface

The domain to orchestrator interface, depicted as D-O
interface in Figure 2 allows a science network orchestrator
to consume services from a site, WAN, or SDX controller.
To understand the services that should be exposed by a site
controller, we studied the Energy Science Network (ES-
Net) requirement review reports from 2013 to 2015 [16],
and synthesized the most common scientific data transfers
as follows: bulk data transfer, real-time data transfer, and
management network traffic.

3.3.2. User/Application to Orchestrator (U-O) Interface

The user/application to orchestrator interface, depicted
as U-O interface in Figure 2 allows a scientist or a scientific
application to request services from a science network or-
chestrator. The U-O interface includes flexible parameters
that allow the orchestrator to negotiate an optimal solu-
tion to a user request, given the user constraints and the
network state. Although, the U-O interface is an impor-
tant component of the overall architecture, we will focus
on the D-O interface and the components pertaining the
network infrastructure for this study.

4. Design

In this section we present the design challenges for a
system that provides multi-domain, multi-path advance

3

Figure 2: Reference architecture for end-to-end service orchestration in multi-domain science networks. Several independent administrative
domains are connected by inter-domain links, and expose science network services to a centralized orchestrator through the domain to
orchestrator (D-O) interface. The orchestrator then composes end-to-end science network services and exposes them to domain-expert
scientists and data transfer applications through the user to orchestrator (U-O) interface.

reservations in science networks. We focus on the orches-
trator and its interfaces that are used to communicate with
end users and participant domains, the negotiation proto-
col, and the SDX services required to compose this kind of
circuit. Regarding additional components of the orchestra-
tor such as path computation and resource management,
we take advantage of readily available implementations of
these standard components.

4.1. General Workflow

This section describes the general workflow for request-
ing and composing multi-path, multi-domain advance reser-
vations. We assume that multiple paths exist between two
research facilities, and these paths traverse multiple ad-
ministrative domains that provide connectivity and guar-
anteed bandwidth by using advanced reservation systems.
We also assume that SDXs serve as interconnection points
for these administrative domains, enabling richer connec-
tivity. An orchestrator (see subsection 3.2) then is in
charge of receiving user requests, requesting science net-
work resources from the participant domains, and compos-
ing end-to-end services. We assume that advance reserva-
tion systems provide network service offers (or bandwidth
offers). This should not be confused with open topol-
ogy sharing, which is already supported by OSCARS and
OESS [5].

Figure 3 depicts the general worflow for requesting
multi-domain, multipath advance reservations. The work-
flow starts with a user requesting a flexible, multi-domain
advance reservation to the orchestrator, which performs
path computation to determine the domains and SDXs on
the path. Then, the orchestrator decomposes the user’s

Figure 3: General workflow for requesting multi-domain, multipath
advance reservations.

4

request into individual requests for each domain and SDX
on the path, and it requests reservation offers from each
participant domain. Finally, the orchestrator uses these of-
fers to compose an end-to-end service, commit offers and
contact SDXs to make interconnections if an end-to-end
service is possible, and aborts unused offers. Otherwise,
the orchestrator aborts all offers.

4.2. Negotiation Protocol

In this section we take a deeper look on the negotiation
protocol that allows the orchestrator to compose multi-
path, multi-domain advance reservations. The negotiation
protocol is divided in two phases: phase 1 requests offers
from participant domains and composes an end-to-end ser-
vice, and phase 2 commits the successful offers, aborts un-
used offers, and request interconnection at SDXs. It is
important to note that not all participants are willing to
provide reservation offers, either because they have legacy
systems, or because they have privacy concerns. We iden-
tify those domains that provide reservation offers as visi-
ble domains, and those that do not provide offers as blind
domains. Visible domains are considered as the initial op-
tion to compose the end-to-end service. Blind domains
are only considered if visible domains do not have enough
resources. The rationale behind this strategy is that by
considering blind domains for remaining resources, we in-
crease the chances of success because it is easier to allocate
smaller amounts of bandwidth. Our negotiation protocol
is composed of seven types of messages: Reservation, Re-
qOffers, SendOffers, ReservationPrep, Commit, Abort, and
ReservationResp, that we describe in Table 1.

Figure 4 shows the detailed negotiation protocol con-
sidering N participant domains, with M visible domains
and N −M blind domains. We consider three scenarios:

1. No visibility (M = 0): All participant domains are
blind domains (i.e., only traditional advance reser-
vation systems participate in the orchestration pro-
cess).

2. Full visibility (M = N): All participant domains
are visible domains (i.e., only systems that provide
bandwidth offers participate in the orchestration pro-
cess).

3. Partial visibility (M 6= N): blind domains and
visible domains participate in the orchestration pro-
cess (i.e., a mix of traditional advance reservation
systems and systems that provide bandwidth offers
participate in the orchestration process).

The negotiation starts with a user requesting a Reser-
vation. This reservation is decomposed by the orchestrator
into individual reservation requests. How the orchestra-
tor divides the original bandwidth request depends on the
number of visible and blind domains participating in the
process. The orchestrator sends ReqOffers messages to the

M visible domains. These domains respond with SendOf-
fers messages to the orchestrator, which uses these offers
to compose an end-to-end service. Each SendOffers mes-
sage contains a token ID [17] to identify the reservation
request, because a domain controller may handle several
requests from other individual users or orchestrators at
a time. If the orchestrator is able to compose an end-
to-end service, the orchestrator transitions to phase 2 of
our negotiation protocol by initiating a two-phase com-
mit process with the participant domains and the SDXs
(using ReservationPrep, Commit, Abort, and Reservation-
Resp messages). Otherwise, the orchestrator requests the
remaining resources to the blind domains and tries to com-
pose a new end-to-end service. If the service composition
succeeds, the orchestrator transitions to phase 2, otherwise
the reservation request fails.

4.3. SDX Rules

As mentioned in subsection 4.1, SDXs are considered
interconnection points in our design. For simplicity, we as-
sume that SDXs in a given domain are in a single location
(i.e., SDXs are not geographically distributed systems in-
side a single domain). We also assume that advance reser-
vation systems provision layer 2 dedicated circuits or L2
tunnels over VLANs at each interconnection point. As a
result, an SDX allows rules that bridge a VLAN in an in-
bound port to another VLAN in an outbound port, split
traffic among several outbound ports, and create the cor-
responding mirror policies for bidirectional traffic.

Figure 5 illustrate the bandwidth splitting service block
diagram. Our architecture takes advantage of the multi-
streaming nature of data transfer protocols (e.g., BBCP
and GridFTP). We propose that an SDN switch and an
SDN controller create flow rules that assign a new VLAN
ID to every new TCP flow. Ideally, these switches and
SDN controllers will be provisioned on demand for each
new multi-path, multi-domain advance reservation, and
may reside at the edge of the SDX or at the end sites. The
orchestrator provides a pool of VLANs that are mapped
to each independent path at the SDX.

The SDN switches in Figure 5 have two ports: a WAN
port that receives all VLAN IDs representing L2 tunnels,
and a LAN port that connects the end site. The SDN
controllers receive a pool of VLANs from the orchestrator
and creates flow rules on the SDN switches that tag each
new packet from a specific flow appearing on the LAN
port with a new VLAN ID from the pool before sending
the packet to the WAN port. For every new packet that
arrives on the WAN port, the SDN controller create flow
rules that remove the VLAN tag and forward the packet
to the LAN port. The SDN controller selects VLAN IDs
from the pool in a round robin fashion. To ensure that all
the traffic belonging to a single flow traverses the same cir-
cuit, a synchronization or coordination between the SDN
controllers assigning the VLANs might exist. Otherwise,
we might have the forward traffic of a TCP flow travers-

5

Table 1: Negotiation Protocol Messages

Message Type Description
Reservation Message from the user to the orchestrator requesting a multi-domain advance reservation
ReqOffers Message from the orchestrator to visible domains requesting advance reservation offers
SendOffers Message from visible domains to the orchestrator replying with a list of advance reservation offers
ReservationPrep Message from the orchestrator to all participant domains and SDXs requesting the preparation of

a reservation
Commit Message from the orchestrator to all participant domains and SDXs committing a reservation

already prepared
Abort Message from the orchestrator to all participant domains and SDXs aborting a reservation already

prepared
ReservationResp Message for notifying whether a requested has succeeded or failed

Figure 4: Negotiation protocol for multi-path, multi-domain advance reservation with M visible domains and N −M blind domains.

GridFTP
Node

SDN
Switch

SDN
Controller

VLAN N

VLAN 2

VLAN 1

LAN WAN
GridFTP

Node
SDN

Switch

SDN
Controller

LANWAN

…

L2 TunnelsVLAN
Pool

VLAN
Pool

Orchestrator

Coordination/Synchronization

Figure 5: Block diagram of bandwidth splitting service components
for SDX rule provisioning.

ing one tunnel, and all the ACKs returning over another
tunnel.

5. Implementation

In this section we present the implementation of an
orchestrator for multi-path, multi-domain advance reser-
vations, and the implementation of an SDX to support
these services.

5.1. Orchestrator Implementation

We implemented the orchestrator in Python using an
agent-based approach. Each participant domain hosts an
agent that receives offer requests from an orchestrator,
process those requests internally, and send offers back to
the orchestrator. We selected an agent-based approach as
opposed to simply consuming APIs provided by each par-
ticipant domain because that allows us to control the WAN

6

communication channel between orchestrator and partic-
ipant domains, while allowing us to customize interfaces
for each domain controller. The orchestrator communi-
cates with the agents using the general remote procedure
call (gRPC) protocol [18], a high-performance RPC frame-
work optimized for distributed computing and mobile en-
vironments.

5.2. Negotiation Protocol Implementation

First, we assume the path computation component has
determined the domains that provide an end-to-end path
between source and destination. Second, we consider the
three scenarios described in subsection 4.2 (i.e., no visibil-
ity, full visibility, and partial visibility). As a result, we
define three variants of the negotiation protocol for band-
width splitting:

1. Equal Splitting: This strategy could be applied
to any scenario. However, it is more suitable for
the no visibility scenario, because it does not require
the ability to request offers. In this approach the
orchestrator divides the original bandwidth request
in equal parts among the participant domains.

2. Partial Offers: This approach is mainly applicable
to the partial visibility scenario; the orchestrator con-
tacts the visible domains for bandwidth offers. If the
orchestrator is able to compose an end-to-end service
with these offers only, the orchestrator proceeds with
Phase 2 of our negotiation protocol (i.e., provision-
ing). Otherwise, the orchestrator tries to request the
remaining bandwidth from blind domains.

3. Full Offers: This approach is only applicable to
the full visibility scenario. In this approach the or-
chestrator contacts all participant domains for band-
width offers. If the orchestrator is able to compose
an end-to-end service with these offers, the orchestra-
tor proceeds with Phase 2, otherwise the reservation
request fails.

5.3. SDX Implementation

Our SDX implementation is based on AtlanticWave/SDX
[19], an SDX controller written in Python that uses the
Ryu SDN Framework [20] as an OpenFlow [21] speaker,
and has a REST API and Web application for manage-
ment. Currently, AtlanticWave/SDX supports advance
reservation of L2 tunnels using the Web interface or the
REST API. We added the bandwidth query functionality
through a REST API in AtlanticWave/SDX to support our
negotiation protocol. We verified that OSCARS supports
a similar functionality through their Web interface, but it
does not have a REST API for bandwidth queries. The
AtlanticWave/SDX controller provisions L2 tunnels using
VLAN IDs in the same way OSCARS and AL2S provision
their circuits.

6. Evaluation

In this section we evaluate the success rate of the three
variations of our negotiation protocol, and the performance
of several provisioning strategies for a multi-path, multi-
domain advance reservation service.

6.1. Multi-path, Multi-domain Advance Reservations

To evaluate our multi-path, multi-domain advance reser-
vation we consider the topology depicted in Figure 6a.
This topology is composed of four end sites (sites A, B, C,
and D), connected to three regional networks (RN1, RN2,
and RN3) where an SDX might reside. These three re-
gional networks are further connected to two R&E (R&E-1
and R&E-2). For our simulation, we created a registry of
advance reservations for both R&Es. Each record on the
registry represents a time window, and contains the avail-
able bandwidth (randomly generated) for every possible
point-to-point connection. For our simulation we gener-
ate a random request composed of a time window, a re-
quired bandwidth, a source, and a destination. We send
this request to both domains individually, and evaluate
whether the domains have enough available resources. For
our multi-path, multi-domain advance reservation service
we evaluate whether the sum of the available bandwidth in
both domains satisfies the request. Figure 6b shows that
our multi-path, multi-domain approach has an 85% success
rate when two independent paths are available, compared
to approximately 50% success rate for the state-of-the-art
(single path) approach.

6.2. Negotiation Protocol Success Rate

To evaluate the success rate of the three variants of
our negotiation protocol (i.e., equal splitting, partial of-
fers, and full offers), we simulated a scenario in which an
orchestrator can request advance reservations from up to
four participant domains to compose a multi-path, multi-
domain advance reservation. We chose four domains, be-
cause this is a reasonable number of multiple intercontinental
paths between two sites as mentioned in section 2. For
each participant domain, we generated a bandwidth sched-
ule of 1000 entries that provide the available bandwidth at
a given time point. A user generates 100 random band-
width requests within the time window defined by the
aforementioned 1000 entries. We ran the simulation 32
times and took the averages for each scenario.

Figure 6c shows the results of our simulations. The
horizontal line represents the success rate for a single do-
main, which is 49.56% under our assumptions. Any of
our strategies outperform the baseline. In the worst case
scenario (i.e., equal splitting under no visibility), the suc-
cess rate of our orchestrator is approximately 58%. Under
the best conditions (four visible domains), our orchestrator
achieves approximately 99% success rate, which translate
to a 2X improvement. The optimal solution is found when
three multiple paths are available, because all three nego-
tiation strategies achieve greater than 95% success rate.

7

Site A Site B Site C Site D

RN1 RN2

R&E-2

R&E-1

RN3

(a) Topology R&E-1 R&E-2 MP-MD0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

(b) State-of-the-art

2 3 4
Number of Domains

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Eq. Split
Part. Offers
Full Offers

(c) Negotiation protocol

Figure 6: Simulation topology and results: (a) topology for multi-path, multi-domain advance reservation evaluation simulation; (b) success
rate for multi-path, multi-domain advance reservation evaluation compared to the state-of-the-art methods; and (c) Negotiation protocol
success rate for three bandwidth splitting strategies and up to four participant domains.

6.3. SDX Experimental Setup

Figure 7 shows the topology of our experimental setup,
and Table 2 shows the specifications of the equipment we
used to build the testbed. Our testbed is composed of
four virtual switch instances or bridges (bridge1, bridge2,
bridge3, and bridge4) hosted by a Corsa DP2100 Open-
Flow dataplane. Each bridge is connected to an instance
of the AtlanticWave/SDX controller [19] (SDX1, SDX2,
SDX3, and SDX4) running on a Docker container inside
a Dell PowerEdge R220 server. This server also hosts
our orchestration system: four instances of our orchestra-
tion agents (agent1, agent2, agent3, and agent4), and one
orchestrator. Each orchestrator agent runs on a Docker
container, and each one is paired with an SDX instance,
while the orchestrator runs on another Docker container
and communicates with the agents using gRPC. We used
two customized Supermicro servers as GridFTP endpoints.
Each server runs a docker container with either a GridFTP
server or a GridFTP client (globus-url-copy), an Open
vSwitch (OVS) [22] virtual switch, and a Ryu SDN con-
troller [20]. We used the OVS switches and Ryu controllers
at the endpoints, because of limited available ports on the
Corsa switch to create more virtual switch instances. We
added a delay of 45 ms on each server’s network interface
for a 90 ms RTT to emulate an intercontinental link. We
tuned the TCP configuration of both endpoint servers for
1 Gbps link speed, 90 ms RTT, and parallel streams as
recommended by ESNet’s Linux Tuning guideline [23].

6.4. Data Transfer Methods

We measured the throughput baseline of a data trans-
fer over a single-path, multi-domain advance reservation
versus a data transfer over a multi-path, multi-domain
advance reservation on our testbed using two data trans-
fer methods: GridFTP memory-to-memory (m2m), and
GridFTP disk-to-disk (d2d) data transfers. We used iperf3,
a well-known bandwidth measuring tool as a reference.
Figure 8 shows the results of performing the aforemen-
tioned data transfer over a 1 Gbps link with 90 ms RTT.

Corsa DP2100

bridge1

bridge2

bridge3
bridge4OVS1 OVS2

GridFTP
Client

GridFTP
Server

Ryu1 Ryu2
SDX1 SDX4

SDX3

SDX2

agent1

agent3

agent2

agent4

Orchestrator gRPC
REST
OpenFlow
Eth. link

Figure 7: Experimental setup topology.

For iperf3 and GridFTP memory-to-memory, we sustained
the data transfer for five minutes, or the equivalent of
transferring a 37.5 GB of data at line-rate over a 1 Gbps
link, while for GridFTP disk-to-disk we actually trans-
ferred a 20 GB file, which is a reasonable size for a scientific
dataset [16]. We measured the maximum disk throughput
of our GridFTP endpoints, and we obtained 92.34 MB/s
or 738.72 Mbps on average.

Figure 8a shows that iperf3 only reaches 514 Mbps of
throughput for a single L2 tunnel of 1 Gbps of bandwidth,
while GridFTP only reaches 488.56 Mbps and 426.72 Mbps
of throughput for memory-to-memory and disk-to-disk, re-
spectively. The reason for this low performance is that
our endpoints are optimized for parallel TCP streams. As
we see for two and four parallel TCP streams, iperf3 uti-
lized 93.6% of the link (936 Mbps of throughput on aver-
age), and GridFTP memory-to-memory used 88.92% (or
889.24 Mbps on average). However, GridFTP disk-to-disk
is only able to use approximately 67% (670.36 Mbps on
average) of the link with parallel streams.

Figure 8b shows the throughput baseline after split-
ting the bandwidth reservation among two 500 Mbps L2
tunnels. For one and two TCP streams per tunnel, iperf3
achieves 936 Mbps of throughput. However, it is only able

8

Table 2: Experimental setup, equipment specifications

Equipment Specifications
Corsa DP2100 OpenFlow 1.5, multiple flow tables,

multi-context virtualization, 48 Gb
packet buffer, 100 Gbps line-rate

Dell PowerEdge
R220

Ubuntu Server 16.04, 16 GB RAM,
four Intel(R) Xeon(R) CPU E3-1220
v3 @ 3.10GHz processors, four port
Gigabit Ethernet card

Customized Su-
permicro

Ubuntu Server 16.04, 8 GB RAM,
four Intel(R) Xeon(R) CPU X3430
@ 2.40GHz, two Gigabit Ethernet
interfaces

to achieve 883 Mbps with four parallel TCP streams per
tunnel. GridFTP memory-to-memory shows more consis-
tent results with 889.12 Mbps using one and two TCP
streams, and 873.04 Mbps using four streams. To the con-
trary, GridFTP disk-to-disk obtains a slight improvement
after using four TCP streams, achieving 733.44 Mbps of
throughput compared to 632 Mbps and 660.8 Mbps ob-
tained with one and two parallel streams, respectively.

6.5. Number of TCP Streams

ESNet recommends the use of two or four parallel TCP
streams for GridFTP data transfers. We verified that this
recommendation holds true for our bandwidth splitting
service by measuring throughput for a GridFTP memory-
to-memory data transfer. We considered five bandwidth
splitting approaches described in Table 3. The main goal
of the orchestrator in this scenario is to split a bandwidth
reservation among two L2 tunnels, obtaining an aggregate
bandwidth of 1 Gbps. For instance, one strategy is to
split the bandwidth into two 500 Mbps tunnels. Another
strategy is to split the request into one tunnel of 100 Mbps
and another tunnel of 900 Mbps.

Table 3: Splitting Strategies

Code Description
SS1 Tunnel 1: 100 Mbps, Tunnel 2: 900 Mbps
SS2 Tunnel 1: 200 Mbps, Tunnel 2: 800 Mbps
SS3 Tunnel 1: 300 Mbps, Tunnel 2: 700 Mbps
SS4 Tunnel 1: 400 Mbps, Tunnel 2: 600 Mbps
SS5 Tunnel 1: 500 Mbps, Tunnel 2: 500 Mbps

Figure 8c shows that for two and four parallel TCP
streams, the throughput of a data transfer stays very close
to the no-splitting baseline of 889.24 Mbps. For one stream
per tunnel, the throughput increases as the bandwidth
splitting strategy is more balanced. This behavior can
be explained from our observation in Figure 8a. The TCP
stream using a tunnel with a larger bandwidth reserva-
tion cannot fill the pipe, because the endpoints are op-
timized for parallel streams. Meanwhile, the stream us-
ing the smaller reservation is limited, resulting in a poor

overall performance. In the case of eight streams per tun-
nel, the throughput results are not optimal as many TCP
streams are competing for the same resources. These re-
sults are important because the orchestrator has to return
meaningful recommendations to the end user for their data
transfers to run optimally. For instance, given that two
streams per tunnel provides optimal performance, our or-
chestrator should recommend the end user to four parallel
TCP on her application, because the reservation was split
among two tunnels. In the case of splitting the bandwidth
among three tunnels, the orchestrator’s recommendation
should be six parallel streams.

7. Related Work

Multi-domain SDN Architectures - Avallone et
al. [24] proposed an architecture for network resource man-
agement in multi-domain scenarios using service-level spec-
ifications, while Kempf et al. [25] proposed service provider
SDN (SP-SDN), an approach to rapid and flexible cross-
domain service creation that complements SDN and net-
work function virtualization (NFV). Our architecture builds
upon concepts proposed by [24] and [25], and adapts them
to the special necessities of science networks and SDXs.

Network Resource Negotiation - RNAP [26] and
SNAP [27] are two examples of negotiation protocols for
networking and Grid computing resources, respectively.
Both protocols are based on querying resource provider for
the availability of a resources before making a reservation.
Venugopal et al. [28] proposed a negotiation mechanisms
using an alternate offers protocol for advance reservation
of compute nodes in a Grid system. We build upon the
concepts of querying for resources and providing offers to
create our negotiation protocol.

Multi-path Advance Reservations - OLiMPS (Open-
Flow Link-layer MultiPath Switching) [29] is an Open-
Flow application that allows load balancing over multiple
switched paths. Likewise, Plante et al. [30] proposed a
multi-path extension to the OSCARS client that enables
end users to reserve multiple paths, providing session sur-
vivability and increasing parallelism. Although similar to
our work, both of these solutions are for single-domain
reservations, each one focuses on a single piece of the over-
all problem. We provide bandwidth splitting, which makes
more efficient use of network resources, and our multi-
domain architecture is easily adaptable to single domain
scenarios.

8. Conclusions

In this paper we presented an architecture for end-
to-end service orchestration in multi-domain science net-
works that leverages SDXs for providing multi-path, multi-
domain advance reservations. We implemented an orches-
trator for multi-path, multi-domain advance reservations
and an SDX to support these services. Our implemen-
tation uses an agent-based approach in which site agents

9

1 2 4
TCP Streams

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

iperf3
GridFTP m2m
GridFTP d2d

(a) Baseline 1 tunnel @ 1 Gbps

1 2 4
TCP Streams per tunnel

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

iperf3
GridFTP m2m
GridFTP d2d

(b) Baseline 2 tunnels @ 500 Mbps

SS1 SS2 SS3 SS4 SS50

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Streams per Tunnels

1 spt
2 spt
4 spt
8 spt

(c) Num. streams

Figure 8: Throughput measurements while performing data transfers using iperf3, GridFTP memory-to-memory (m2m) and GridFTP disk-
to-disk (d2d) over a 1 Gbps link with 90 ms RTT: (a) shows the baseline for a single L2 tunnel of 1 Gbps, (b) shows the baseline for two L2
tunnels of 500 Mbps each, and (c) represents the effect of number of parallel TCP streams and bandwidth splitting strategies on throughput
for a GridFTP memory-to-memory data transfer over a 1 Gbps link with 90 ms RTT.

communicate with a centralized orchestrator that serves
as a single point of contact for end users. We devel-
oped a negotiation protocol that improves the success rate
of multi-domain advance reservations from approximately
50% when using single-path circuits to almost 99% when
four paths are available. We evaluated our solution using
GridFTP, one of the most popular tools for data trans-
fers in the scientific community. In our experiments, we
tested our system under several conditions of bandwidth
splitting ratios and number of GridFTP streams, and gen-
erated recommendations for the optimal performance of
our system. In future work, we will deploy our orches-
trator in a large scale testbed (e.g., ESNet 100GB SDN
testbed, AtlanticWave/SDX or GENI) and evaluate the
effects of path latency on our bandwidth splitting service.
We will also implement and evaluate novel science network
services such as scheduled path migrations that are trans-
parent to the data transfer applications and multipoint-
to-multipoint advance reservations.

9. Acknowledgments

The authors would like to thank Sean Donovan for his
help in setting up the AtlanticWave/SDX testbed.

References

[1] N. Charbonneau, V. M. Vokkarane, C. Guok, I. Monga, Ad-
vance reservation frameworks in hybrid IP-WDM networks,
Communications Magazine, IEEE 49 (5) (2011) 132–139.

[2] Internet2, Layer 2 services, http://www.internet2.

edu/products-services/advanced-networking/

layer-2-services/, accessed: 2017-07-25.
[3] GlobalNOC, OESS: open exchange software suit, https://

docs.globalnoc.iu.edu/sdn/oess.html, accessed: 2017-10-18.
[4] I. Monga, C. Guok, W. E. Johnston, B. Tierney, Hybrid net-

works: lessons learned and future challenges based on esnet4
experience, IEEE Communications Magazine 49 (5) (2011) 114–
121. doi:10.1109/MCOM.2011.5762807.

[5] S. Tepsuporn, F. Al-Ali, M. Veeraraghavan, X. Ji, B. Cashman,
A. J. Ragusa, L. Fowler, C. Guok, T. Lehman, X. Yang, A multi-
domain sdn for dynamic layer-2 path service, in: Proceedings

of the Fifth International Workshop on Network-Aware Data
Management, NDM ’15, ACM, New York, NY, USA, 2015, pp.
2:1–2:8. doi:10.1145/2832099.2832101.
URL http://doi.acm.org/10.1145/2832099.2832101

[6] J. Chung, R. Clark, H. Owen, SDX architectures: A qualitative
analysis, in: IEEE SoutheastCon 2016, IEEE, 2016, pp. 1–8.

[7] M. Balman, E. Chaniotakisy, A. Shoshani, A. Sim, A flex-
ible reservation algorithm for advance network provisioning,
in: 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 2010,
pp. 1–11. doi:10.1109/SC.2010.4.

[8] S. Venugopal, X. Chu, R. Buyya, A negotiation mechanism for
advance resource reservations using the alternate offers protocol,
in: 2008 16th International Workshop on Quality of Service,
2008, pp. 40–49. doi:10.1109/IWQOS.2008.10.

[9] P. Xiao, Z. Hu, Two-dimension relaxed reservation policy for
independent tasks in grid computing, Journal of Software 6 (8)
(2011) 1395–1402.

[10] Esnet - network maps, https://www.es.net/

engineering-services/the-network/network-maps/, ac-
cessed: 2017-08-28.

[11] Internet2 international networks, https://noc.net.internet2.
edu/i2network/live-network-status/maps-graphs/

internet2-international-network.html, accessed: 2017-
08-28.

[12] R. Ricci, N. Feamster (Eds.), Report of the NSF Workshop
on Software Defined Infrastructures and Software Defined Ex-
changes, Washington, DC, 2016.

[13] Transferring data with bbcp, https://www.olcf.ornl.gov/kb_
articles/transferring-data-with-bbcp/, accessed: 2017-09-
04.

[14] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming,
S. Tuecke, GridFTP: Protocol extensions to FTP for the grid,
Global Grid Forum, GFD-RP 20 (2003) 1–21.

[15] Globus - research data management system, https://www.

globus.org/, accessed: 2017-01-20.
[16] E. Dart, et al., Esnet requirement re-

view reports, https://www.es.net/

science-engagement/science-requirements-reviews/

requirements-review-reports/, accessed: 2017-01-14.
[17] J. Chung, E.-S. Jung, R. Kettimuthu, N. S. Rao, I. T. Fos-

ter, R. Clark, H. Owen, Advance reservation access control us-
ing software-defined networking and tokens, Future Generation
Computer Systems.

[18] gRPC, https://grpc.io/, accessed: 2017-09-06.
[19] Atlanticwave/sdx controller prototype, https://github.com/

atlanticwave-sdx/atlanticwave-proto, accessed: 2017-09-07.
[20] Framework Community, Ryu SDN Framework,, http://osrg.

github.io/ryu, accessed: 2017-09-07.

10

http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://docs.globalnoc.iu.edu/sdn/oess.html
https://docs.globalnoc.iu.edu/sdn/oess.html
http://dx.doi.org/10.1109/MCOM.2011.5762807
http://doi.acm.org/10.1145/2832099.2832101
http://doi.acm.org/10.1145/2832099.2832101
http://dx.doi.org/10.1145/2832099.2832101
http://doi.acm.org/10.1145/2832099.2832101
http://dx.doi.org/10.1109/SC.2010.4
http://dx.doi.org/10.1109/IWQOS.2008.10
https://www.es.net/engineering-services/the-network/network-maps/
https://www.es.net/engineering-services/the-network/network-maps/
https://noc.net.internet2.edu/i2network/live-network-status/maps-graphs/internet2-international-network.html
https://noc.net.internet2.edu/i2network/live-network-status/maps-graphs/internet2-international-network.html
https://noc.net.internet2.edu/i2network/live-network-status/maps-graphs/internet2-international-network.html
https://www.olcf.ornl.gov/kb_articles/transferring-data-with-bbcp/
https://www.olcf.ornl.gov/kb_articles/transferring-data-with-bbcp/
https://www.globus.org/
https://www.globus.org/
https://www.es.net/science-engagement/science-requirements-reviews/requirements-review-reports/
https://www.es.net/science-engagement/science-requirements-reviews/requirements-review-reports/
https://www.es.net/science-engagement/science-requirements-reviews/requirements-review-reports/
https://grpc.io/
https://github.com/atlanticwave-sdx/atlanticwave-proto
https://github.com/atlanticwave-sdx/atlanticwave-proto
http://osrg.github.io/ryu
http://osrg.github.io/ryu

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: En-
abling innovation in campus networks, SIGCOMM Comput.
Commun. Rev. 38 (2) (2008) 69–74. doi:10.1145/1355734.

1355746.
URL http://doi.acm.org/10.1145/1355734.1355746

[22] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Raja-
halme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon,
M. Casado, The design and implementation of open vswitch, in:
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), USENIX Association, Oakland,
CA, 2015, pp. 117–130.
URL https://www.usenix.org/conference/nsdi15/

technical-sessions/presentation/pfaff

[23] Linux tuning, https://fasterdata.es.net/host-tuning/

linux/, accessed: 2017-09-07.
[24] S. Avallone, S. D’Antonio, M. Esposito, S. P. Romano, G. Ven-

tre, Resource allocation in multi-domain networks based on ser-
vice level specifications, Journal of Communications and Net-
works 8 (1) (2006) 106–115. doi:10.1109/JCN.2006.6182910.

[25] J. Kempf, M. Korling, S. Baucke, S. Touati, V. McClelland,
I. Mas, O. Backman, Fostering rapid, cross-domain service in-
novation in operator networks through service provider sdn, in:
Communications (ICC), 2014 IEEE International Conference
on, IEEE, 2014, pp. 3064–3069.

[26] X. Wang, H. Schulzrinne, Rnap: A resource negotiation and
pricing protocol, in: in International Workshop on Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV99), Basking, Citeseer, 1999.

[27] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke,
SNAP: A Protocol for Negotiating Service Level Agreements
and Coordinating Resource Management in Distributed Sys-
tems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp.
153–183. doi:10.1007/3-540-36180-4_9.
URL https://doi.org/10.1007/3-540-36180-4_9

[28] S. Venugopal, X. Chu, R. Buyya, A negotiation mechanism for
advance resource reservations using the alternate offers proto-
col, in: 2008 16th Interntional Workshop on Quality of Service,
2008, pp. 40–49. doi:10.1109/IWQOS.2008.10.

[29] H. B. Newman, A. Barczyk, M. Bredel, OLiMPS. openflow link-
layer multipath switching, Tech. rep., California Institute of
Technology, Pasadena, CA (United States) (2014).

[30] J. M. Plante, D. A. P. Davis, V. M. Vokkarane, Parallel and
survivable multipath circuit provisioning in esnet’s oscars, Pho-
tonic Network Communications 30 (3) (2015) 363–375. doi:

10.1007/s11107-015-0535-x.
URL https://doi.org/10.1007/s11107-015-0535-x

11

http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://fasterdata.es.net/host-tuning/linux/
https://fasterdata.es.net/host-tuning/linux/
http://dx.doi.org/10.1109/JCN.2006.6182910
https://doi.org/10.1007/3-540-36180-4_9
https://doi.org/10.1007/3-540-36180-4_9
https://doi.org/10.1007/3-540-36180-4_9
http://dx.doi.org/10.1007/3-540-36180-4_9
https://doi.org/10.1007/3-540-36180-4_9
http://dx.doi.org/10.1109/IWQOS.2008.10
https://doi.org/10.1007/s11107-015-0535-x
https://doi.org/10.1007/s11107-015-0535-x
http://dx.doi.org/10.1007/s11107-015-0535-x
http://dx.doi.org/10.1007/s11107-015-0535-x
https://doi.org/10.1007/s11107-015-0535-x

	Introduction
	Motivation
	Advance Reservation Systems
	Software-defined Exchange (SDX)

	Architecture Overview
	Site, WAN, and SDX Controllers
	Orchestrator
	Interfaces and Services
	Domain to Orchestrator (D-O) Interface
	User/Application to Orchestrator (U-O) Interface

	Design
	General Workflow
	Negotiation Protocol
	SDX Rules

	Implementation
	Orchestrator Implementation
	Negotiation Protocol Implementation
	SDX Implementation

	Evaluation
	Multi-path, Multi-domain Advance Reservations
	Negotiation Protocol Success Rate
	SDX Experimental Setup
	Data Transfer Methods
	Number of TCP Streams

	Related Work
	Conclusions
	Acknowledgments

